
The enhanced nonlinear response of composite wires: crossover from one- to three-

dimensional behaviour

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 419

(http://iopscience.iop.org/0953-8984/8/4/008)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 13:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/4
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 419–427. Printed in the UK

The enhanced nonlinear response of composite wires:
crossover from one- to three-dimensional behaviour

Wing-Hon Siu and K W Yu
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong
Kong

Received 29 September 1995, in final form 20 November 1995

Abstract. The effective response is calculated for nonlinear composite wires which are
modelled as random nonlinear conductance networks consisting of two different kinds of
conductor, with lateral sizeL and square cross section of widthδ � L. The first kind is nonlinear
and obeys a current–voltage (I–V ) characteristic of the formI = σ1V +χ1V

3, while the second
one is linear withI = σ2V . We invoke a renormalization-group (RG) analysis to rescale the wire
repeatedly by small-cell transformations to obtain a chain of nonlinear conductors, for which
exact formulas for the effective linear responseσe and nonlinear responseχe are available. We
calculateσe andχe as functions of the volume fraction and examine the dependence onδ. We
observe a large enhancement in the nonlinear response as well as an interesting crossover from
one- to three-dimensional behaviour asδ increases. Numerical simulations are performed to
validate the RG calculations.

1. Introduction

The physics of nonlinear inhomogeneous media, in which nonlinearity and inhomogeneity
are present simultaneously, has been a subject of much interest because of their potential
applications [1–6]. During the past few years, much effort has been devoted to calculations
of the effective response in nonlinear composite media consisting of two or more materials
[1, 7–13]. In the weakly nonlinear regime in which the nonlinearity can be treated as a
small perturbation, various methods have been established [7–9]. Recently much attention
has been concentrated on strongly nonlinear composites [10–13].

It is observed that the effective response of composite media can differ drastically from
that of their constituents [1]. The widely varying constitutive properties may lead to large
fluctuations in the local electric fields and to large enhancements in the effective properties.
Such an enhancement effect may be more pronounced in nonlinear composites [14]. It
has been shown that the effective nonlinear response can be enormously enhanced near
the percolation threshold under appropriate conditions [15]. Recently, large enhancements
in the effective nonlinear response have also been found in fractal clustering in nonlinear
composites [16]. It is therefore believed that the effective nonlinear response may depend
strongly on the microgeometry and dimensionality of the composite systems.

Recently, significant advances have been made in materials fabrication techniques. By
means of molecular beam epitaxial techniques, samples of various materials with desired
geometry, size, interface and surface conditions have been made available. In this work, we
use a simple nonlinear conductance network model to study the effective nonlinear response
of composite wires. We apply a renormalization-group (RG) analysis for calculating the
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effective linear and nonlinear response. We find large enhancements in the effective
nonlinear response under certain conditions and a crossover from one- to three-dimensional
behaviour as the width increases. Numerical simulations are performed to validate the RG
calculations.

The paper is organized as follows. In the next section, we describe the model for
weakly nonlinear composites and present the established formulas for the effective linear
and nonlinear response. In section 3, we derive the exact formulas for the effective linear
and nonlinear response of a chain of nonlinear conductors. In section 4, we use the RG
analysis to calculate the effective linear and nonlinear response of composite wires. We shall
perform numerical simulations to validate the RG calculations. Possible generalizations of
the present work will be discussed.

2. Model and method

Consider ad-dimensional (dD), two-component hypercubic random nonlinear conductance
network which consists of two kinds of conductor. The first kind is assumed to be nonlinear
and obeys a current–voltage (I–V ) characteristic of the form

I = σ1V + χ1V
3 (1)

whereσ1 and χ1 are the linear and nonlinear conductance respectively. Throughout this
work, the nonlinearity is assumed to be weak so thatχ1V

2/σ1 � 1 and we restrict ourselves
to cubic nonlinearity. Generalizations to arbitrary nonlinearity are possible. The second
component is ohmic with

I = σ2V (2)

whereσ2 is the linear conductance. The nonlinear conductors are randomly assigned to the
network with a volume fractionp while the volume fraction of the second component is
q = 1−p. We aim at calculating the effective linear and nonlinear response of the network,
represented by a homogeneous network of identical conductors, each of which has anI–V

characteristic of the form

I = σeV + χeV
3 (3)

whereσe andχe are the effective linear and nonlinear response respectively and are given
by the voltage-summation formulas [8, 9, 15]

σe = 1

�

∑
α

σαV 2
α (4)

χe = 1

�

∑
α

χαV 4
α (5)

where σα and χα are the linear and nonlinear response of theαth conductor; and
� = ∏d

i=1 Li , where Li is the lateral size along theith Cartesian direction. Without
loss of generality, we apply a voltage along thex1-direction and free boundary conditions
in the remaining(d − 1) directions. We adopt the convention that the voltage across the
two opposite(d − 1)-dimensional hyperplanes isV = L1 so thatVα = 1 for bonds along
x1 in the limit of a homogeneous network. In equations (4) and (5),Vα is the voltage
difference across theαth conductor in thelinear random problem (i.e., obtained by solving
the same random network problem with allχα = 0). The summation is performed over all
conductors in the network.
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In what follows, we shall consider a cylindrical wire of lengthL1 = L and of square
cross section of widthL2 = δ � L. We calculateσe andχe and examine their dependence
on δ. An interesting crossover from one- to three-dimensional behaviour will be observed.

Figure 1. For L = 32 chains, the normalized effective (a) linear response (σe/σ1) and
(b) nonlinear response (χe/χ1) are plotted as functions of the volume fractionp for various
conductance ratiosh in the S/N limit. We observe a large enhancement in the effective nonlinear
responseχe, which increases withh while the location of the maximum nonlinear response
occurs atp∗ ≈ 1/L, roughly independently ofh. For clarity, we show in the insetsσe/σ1 and
χe/χ1 in semi-logarithmic plots. From bottom to top in order of increasing conductance ratio:
h = 2, 5, 10, 20, 50, 100, 200, 500 and 1000.

Consider a chain (δ = 1) of L conductors,k of which are of type 1 (σ1, χ1), while the
remaining(L − k) of which are of type 2 (σ2, χ2), subject to an applied voltageV = L

along the chain. For convenience, we denote the conductance ratio ash = σ2/σ1. For
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series combination of linear conductances, we obtain the voltagesV1 = hL/(L − k + hk)

and V2 = L/(L − k + hk) across type 1 and 2 conductors respectively. By using the
voltage-summation formulas, together with simple combinatorial considerations, we arrive
at theexactformulas for the effective linear and nonlinear response of a chain:

σe =
L∑

k=0

(
L

k

)
pkqL−k Lσ1σ2

(L − k)σ1 + kσ2
(6)

and

χe =
L∑

k=0

(
L

k

)
pkqL−k L3[χ1kh4 + χ2(L − k)]

(L − k + hk)4
. (7)

We study two limits: (1) the normal-conductor–insulator (N/I) case in which the second
component conducts less well (h � 1) and (2) the superconductor–normal-conductor (S/N)
case in which the second component conducts better (h � 1). The chain formulas can be
used to calculateσe andχe for both cases. For the N/I case, we find a large decrease in the
effective nonlinear response while a large enhancement occurs for the S/N case [15]. We
shall present results for the S/N case for illustration. The length of wireL = 32. In figure 1,
we plot the normalized effective linear response (σe/σ1) and nonlinear response (χe/χ1) as
a function of the volume fractionp for various conductance ratiosh > 1. We observe a
large enhancement in the effective nonlinear responseχe. The enhancement increases with
the conductance ratio while the locations of maximum response ofχe occur atp∗ ≈ 1/L.
The location of peakp∗ is determined numerically from equation (7) in the limit of large
h. We obtainp∗ = 0.268, 0.135, 0.067, 0.034 and 0.017 forL = 4, 8, 16, 32 and 64
respectively. The result is in reasonable agreement with the numerical calculations, as is
evident in figure 1. For clarity, we also show the effective response in semi-logarithmic
plots in the insets.

3. Linear and nonlinear response of composite wires

When inter-chain couplings are present, we may model the system with a nonlinear
composite wire of a finite cross section of widthδ. We resort to a renormalization-group
(RG) analysis [17–19] because we believe that RG analysis is able to capture local field
fluctuations better than the effective-medium approximation [7]. We start out with a wire of
dimensionL × δ × δ, with initial parametersp, q, σ1, σ2, χ1 andχ2; h = σ2/σ1. The idea
of RG analysis is to rescale the wire repeatedly via a simple small-cell transformation, to
obtain a chain of a shorter length. In this way, we obtain a set of renormalized parameters
p′, q ′, σ ′

1, σ
′
2, χ

′
1 andχ ′

2; h′ = σ ′
2/σ

′
1. We perform a simple 2× 2 × 2 cell RG analysis to

reduce the dimension of the wire to(L/2)× (δ/2)× (δ/2); standard RG techniques are used
to calculate the renormalized quantities [19]

q ′ = R2(q) (8)

σ ′
1 = 81(σ1, σ2, p) (9)

σ ′
2 = 82(σ1, σ2, p) (10)

χ ′
1 = 91(χ1, χ2, h, p) (11)

χ ′
2 = 92(χ1, χ2, h, p) (12)

whereR2(q) = 4p10q2 +48p9q3 +238p8q4 +616p7q5 +856p6q6 +776p5q7 +493p4q8 +
220p3q9 + 66p2q10+ 12pq11+ q12, p′ = 1− q ′; 81, 82, 91 and92 are transformations of
their arguments. In obtaining equations (9)–(12), one has to invoke either a geometrical or
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arithmetic mean over 3330 spanning-superconductor and 766 nonspanning-superconductor
configurations [18] respectively while equations (11) and (12) represent a generalization
of the established RG analysis [17–19] to the nonlinear response. We then repeat the RG
analysis several times untilδ′ = 1. For aδ = 2 wire, one RG procedure already meets
the need, while for aδ = 4 wire, two consecutive RG procedures are needed to obtain
a chain of a shorter lengthL′, with renormalized quantitiesp′, σ ′

1, σ
′
2, h

′, χ ′
1 and χ ′

2. The
chain formulas (equations (6) and (7)) can therefore be used to obtain the effective linear
and nonlinear response of composite wires.

We first present numerical RG results for aδ = 2, L = 32 wire. In figure 2, we
plot σe/σ1 and χe/χ1 as a function of the volume fractionp for various conductance
ratiosh. Again, we observe a large enhancement in the effective nonlinear response. The
enhancement increases with the conductance ratio while the location of maximum response
of χe has shifted to a largerp∗, an estimate of which will be discussed below. However, it
is also noted that the strength of enhancement has decreased slightly.

4. Exact formulas for linear and nonlinear response of a chain of nonlinear
conductors

We then present numerical RG results for aδ = 4, L = 32 wire. In figure 3, we plot
σe/σ1 and χe/χ1 as functions of the volume fractionp for various conductance ratios
h. Similarly, we observe a large enhancement in the effective nonlinear response. The
enhancement increases with the conductance ratio while the location of maximum response
of χe has now shifted to an even largerp∗, indicating a crossover from 1D to 3D behaviour.
It is also noted that the strength of enhancement has decreased substantially as compared to
the small-δ cases due to to the reduced fluctuations of local electric fields present at largerδ.

It is instructive to establish a result for the location of peak via the RG analysis. For
σ2 > σ1, a large enhancement ofχe occurs in the vicinity of the percolation threshold
of the better-conducting component [14, 15]. Since percolation of the better-conducting
component occurs atpc = 0 and 0.751 in 1D and 3D respectively [20], we expect a large
enhancement ofχe to occur somewhere betweenp = 0 and 0.751 for finiteL andδ. In the
language of RG analysis, the shift ofp∗ towards the 3D value asδ increases is attributed
to the fact that the renormalized chain length decreases withδ. By using equation (8), we
obtain for 32× δ × δ wires, p∗ = 0.034, 0.390, 0.643, and 0.740 forδ = 1, 2, 4, and 8
respectively, values that are in good agreement with the numerical calculations presented
in figures 2 and 3. These values can be interpreted as the effective percolation threshold
of a wire of finite width [19, 21]. It is evident that the peak of response shifts towards the
3D percolation thresholdpc = 0.792 asδ increases. The change from 1D to 3D behaviour
is quite rapid as is evident from the figures. The present RG analysis is noted to give an
overestimate ofpc = 0.751 in 3D bond-percolation networks [20].

To confirm the RG result, it is instructive to perform numerical simulations in nonlinear
conductance networks [15]. We have done simulations for 32×2×2 and 32×4×4 networks
as a generalization of the previous simulation for 2D random nonlinear conductance
networks [15]. Details of the numerical simulations can be found in [15]. Again, we
present results for the S/N case only. In the insets of figures 2 and 3, we also show
the normalized effective linear and nonlinear response of numerical simulation in a semi-
logarithmic plot for comparison. As is evident from the figures, very good agreement
between the RG and simulation data is obtained for the effective linear response. For
the effective nonlinear response, while good agreement is obtained near the peaks, strong
deviations are nevertheless observed at smallp-values. This is attributed to the fact that
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Figure 2. For δ = 2 wire andL = 32, the (a) linear responseσe/σ1 and (b) nonlinear response
χe/χ1 are plotted as functions of the volume fractionp for various values ofh. Again, we
observe a large enhancement inχe. The location of the maximum nonlinear response has
shifted to a largerp∗, the value of which coincides with the estimate from RG analysis. It is
also noted that the strength of enhancement has decreased slightly. In the insets, we show the
numerical simulation data (symbols) in semi-logarithmic plots. From bottom to top in order of
increasing conductance ratio:h = 2, 5, 10, 20, 50, 100, 200, 500 and 1000. As is evident from
the figures, a reasonable agreement between the RG and simulation data is obtained.

while the RG analysis generally gives reasonable critical behaviour near the percolation
thresholdpc—namely, reasonable numerical values forpc and critical exponents [19]—it
may not capture the correct behaviour away frompc.

In this connection, it is tempting to fit the simulation data via a simple effective-medium
approximation (EMA) [7]. It has been found that while the EMA can be used to fit the
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Figure 3. Similar to figure 2, but for aδ = 4 wire. We observe a large enhancement inχe.
The location of the maximum response ofχe has now shifted to an even largerp∗, indicating a
crossover from 1D to 3D behaviour. In the insets, we also show the simulation data (symbols).
As is evident from the figures, a reasonable agreement between the RG and simulation data is
obtained.

simulation data ofσe reasonably well, strongly deviations are nevertheless observed for the
effective nonlinear responseχe. This is attributed to the fact that the EMA ignores local
field fluctuations explicitly [22].

In fact, such an enhancement in the effective nonlinear response was found earlier by
Levy and Bergman [23] in weakly nonlinear conductivity of a two-component composites.
In [23], a scalingansatzfor χe was proposed, similar to that proposed for the scaling
behaviour of flicker noise in two-component composites [24]. It should be remarked that
a significant result of our calculations is the dependence of the enhancement on the small
dimensions of a composite wire.



426 Wing-Hon Siu and K W Yu

5. Discussions and conclusions

In conclusion, the effective response has been calculated in nonlinear composite wires and
wires with lateral sizeL much larger than the widthδ. We have used the renormalization-
group analysis to calculate the effective linear and nonlinear responses as functions of the
volume fractionp and examine their dependence onδ. We observe large enhancements in
the nonlinear response under appropriate conditions, as well as interesting crossover from
1D to 3D behaviour asδ increases. Numerical simulations are performed and compare well
with the RG calculations.

Here a few comments on the results are in order. Although the discussion has been
limited to percolative conduction, generalization can readily be made to dielectric response
at finite frequencies. The enhancement as well as dimensionality crossover effects may
possibly be observed in experiments on electrorheological (ER) systems where an inherent
nonlinear characteristic occurs due to the formation of columnar structures in the ER systems
under the application of intense electric fields [25]. Possible experiments may also be done
on the optical properties of nonlinear composite wires.

Moreover, generalization can also be made to composite thin films [26] of metallic
particles embedded in dielectric hosts, in which caseδ plays the role of the thickness of
the film and a crossover from 2D to 3D behaviour can be observed. Possible experiments
may also be done on the optical properties of nonlinear composite thin films. In this
connection, a simple EMA is shown to give a reasonable fit of the simulation data [26]
in linear composite thin films. However, we believe that the present RG analysis may fit
the effective nonlinear response better [27]. In order to test the asymptotic scaling theory
[21], pertaining to the 2D–3D dimensionality crossover, extensive simulation as well as
RG analysis should be performed. Relevant studies include the extraction of the effective
percolation threshold, critical exponents and universal scaling functions [15]. This work is
left for future studies [27].
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